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Abstract

Defining multivariate generalizations of the classical univari-
ate ranks has been a long-standing open problem in statis-
tics. Optimal transport has been shown to offer a solution by
transporting data points to grid points approximating a refer-
ence measure (Chernozhukov et al. 2017; Hallin 2017; Hallin
et al. 2021). We take up this new perspective to develop
and study multivariate analogues of popular correlations mea-
sures including the sign covariance, Kendall’s tau, and Spear-
man’s rho. Our tests are genuinely distribution-free, hence
valid irrespective of the actual (absolutely continuous) distri-
butions of the observations. We present asymptotic distribu-
tion theory for these new statistics, providing asymptotic ap-
proximations to critical values to be used for testing indepen-
dence as well as a power analysis of the resulting tests. In-
terestingly, we are able to establish a multivariate elliptical
Chernoff–Savage property, which guarantees that, under el-
lipticity, our nonparametric tests of independence when com-
pared to Gaussian procedures enjoy an asymptotic relative
efficiency of one or larger. Hence, the nonparametric tests
constitute a safe replacement for procedures based on multi-
variate Gaussianity.

1 Introduction
The problem of testing for independence between two ran-
dom variables with unspecified densities has been among the
very first applications of rank-based methods in statistical
inference. Spearman’s correlation coefficient was proposed
in the early 1900s (Spearman 1904), and Kendall’s rank cor-
relation goes back to Kendall (1938), long before Wilcoxon
(1945) gave his rank sum and signed rank tests for location.

The multivariate version of the same problem—testing in-
dependence between two random vectors with unspecified
densities—is significantly harder, crucially due to the dif-
ficulty of defining a multivariate counterpart to univariate
ranks. Indeed, for d > 1 the real space Rd lacks a canon-
ical ordering. As a result, the problem of defining, in di-
mension d > 1, concepts of signs and ranks enjoying the
properties that make the traditional ranks so successful in
univariate statistical inference has been an open problem for
more than half a century. One of the most important prop-
erties is the exact distribution-freeness (for i.i.d. samples
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from absolutely continuous distributions). In an important
new development involving optimal transport, the concept
of center-outward ranks and signs was proposed recently
by Chernozhukov et al. (2017), Hallin (2017), and Hallin
et al. (2021) and enjoys a property of “maximal distribution-
freeness”, contrary to earlier concepts put forth in work such
as Puri and Sen (1971); Oja (2010); Liu and Singh (1993);
Zuo and He (2006); Hallin and Paindaveine (2002b,a).

For testing independence between two random vectors,
the first attempt to provide a rank-based alternative to the
Gaussian likelihood ratio method of Wilks (1935) was de-
veloped in Chapter 8 of Puri and Sen (1971) and, for almost
thirty years, has remained the only rank-based approach to
the problem. The proposed tests, however, are based on com-
ponentwise rankings and are not distribution-free—unless,
of course, both vectors have dimension one, in which case
we are back to the traditional context of bivariate indepen-
dence (see, e.g., Chapter III.6 of Hájek and Šidák (1967)).
This issue persists in more recent work, e.g., that of Puri and
Sen (1971), Randles (1989), Gieser (1993), Gieser and Ran-
dles (1997), Taskinen, Kankainen, and Oja (2003, 2004),
and Taskinen, Oja, and Randles (2005).

We note here that the above work does provide test
statistics that are asymptotically distribution-free in sub-
classes such as elliptical distributions. From the perspec-
tive we take here, such subclasses are too restrictive. More-
over, there is a crucial difference between finite-sample
and asymptotic distribution-freeness. Indeed, one should
be wary that a sequence of tests ψ(n) with asymptotic
size limn→∞ EP[ψ(n)] = α under any element P in a
class P of distributions does not necessarily have asymp-
totic size α under unspecified P ∈ P: the convergence
of EP[ψ(n)] to α, indeed, typically is not uniform over P , so
that, in general, limn→∞ supP∈P EP[ψ(n)] 6= α. Genuinely
distribution-free tests ψ(n), where EP[ψ(n)] does not depend
on P, do not suffer that problem, and this is why finite-
sample distribution-freeness is a fundamental property.

Palliating these limitations of the existing procedures by
defining genuinely distribution-free—now over the class of
all absolutely continuous distributions—multivariate exten-
sions of the quadrant, Spearman, and Kendall tests, based on
the concept of center-outward ranks and signs, is thus highly
desirable. It is the objective of this paper.



While this paper is focusing on quadrant, Spearman, and
Kendall tests of independence, other tests have been con-
sidered in the literature. Center-outward ranks and signs
have been used recently by Shi, Drton, and Han (2021+)
in the construction of distribution-free versions of distance
covariance tests for multivariate independence, and a gen-
eral framework for designing distribution-free tests of mul-
tivariate independence that are consistent and statistically ef-
ficient based on center-outward ranks and signs has been de-
veloped in Shi et al. (2021+). Multivariate ranks (based on
measure transportation to the unit cube rather than the unit
ball) have been used similarly in Ghosal and Sen (2021+),
Deb and Sen (2021+).

Center-outward ranks and signs also have been used suc-
cessfully in other statistical problems: rank tests and R-
estimation for VARMA models (Hallin, La Vecchia, and Liu
2021+, 2022+), rank tests for multiple-output regression and
MANOVA (Hallin, Hlubinka, and Hudecová 2022+), and
two-sample goodness-of-fit tests (Deb and Sen 2021+; Deb,
Bhattacharya, and Sen 2021; Hallin and Mordant 2021). We
show here how center-outward ranks and signs naturally al-
low us to define distribution-free multivariate versions of the
popular quadrant, Spearman, and Kendall tests.

The paper is organized as follows. Section 2 briefly re-
views the notion of center-outward ranks and signs, and
Section 3 introduces our tests of multivariate independence
based on center-outward ranks and signs. In Section 4,
we establish an elliptical Chernoff–Savage property for our
center-outward test based on van der Waerden scores, which
uniformly dominates, against Konijn alternatives, Wilks’
test for multivariate independence, and we also derive an
analog of Hodges and Lehmann (1956)’s result for the prob-
lem under study. This paper ends with a short conclusion in
Section 5. All the detailed proofs of our results are available
upon request from the authors.

2 Center-outward distribution functions,
ranks, and signs

2.1 Definitions
Denoting by Sd and Sd−1, respectively, the open unit ball
and the unit hypersphere in Rd, let Ud stand for the spher-
ical1 uniform distribution over Sd. Let P belong to the
class Pd of Lebesgue-absolutely continuous distributions
over Rd. The main result in McCann (1995) then implies
the existence of an a.e. unique convex (and lower semi-
continuous) function φ : Rd → R with gradient ∇φ such
that2 ∇φ#P = Ud. Call center-outward distribution func-
tion of P any version F± of this a.e. unique gradient.

Further properties of F± require further regularity as-
sumptions. Assume that P is in the so-called class P+

d ⊂ Pd
of distributions with nonvanishing densities—namely, the

1Namely, the spherical distribution with uniform (over [0, 1])
radial density—equivalently, the product of a uniform over the
distances to the origin and a uniform over the unit sphere Sd−1.
For d = 1, U1 coincides with the Lebesgue uniform over (−1, 1).

2We borrow from measure transportation the convenient nota-
tion T#P (T : Rd → R

d pushes P forward to T#P) for the
distribution of T (Z) under Z ∼ P.

class of distributions with density f := dP/dµd (µd the d-
dimensional Lebesgue measure) such that, for all D ∈ R+,
there exist constants λ−D;P and λ+D;P satisfying

0 < λ−D;P ≤ f(z) ≤ λ+D;P <∞ (2.1)

for all z with ‖z‖ ≤ D.
Then, it follows from Figalli (2018) that there exists a ver-

sion of F± defining a homeomorphism between the punc-
tured unit ball Sd \ {0} and Rd \ F−1± ({0}); that version
has a continuous inverse Q± (with domain Sd\{0}), which
naturally qualifies as P’s center-outward quantile function.
Figalli’s result is extended, in del Barrio, González-Sanz,
and Hallin (2020), to a more general3 class P±d of absolutely
continuous distributions, while the definition of F± given
in Hallin et al. (2021) aims at selecting, for each P ∈ Pd,
a version of ∇φ which, whenever P ∈ P±d , is yielding that
homeomorphism. For the sake of simplicity, since we are not
interested in quantiles, we stick here to the a.e. unique def-
inition given above for P ∈ Pd, and, whenever asymptotic
statements are made, to P ∈ P+

d .
Turning to sample quantities, denote by Z(n) a triangu-

lar array
(
Z

(n)
1 , . . . ,Z

(n)
n

)
, n ∈ N of i.i.d. d-dimensional

random vectors with distribution P. Associated with Z(n)

is the empirical center-outward distribution function F
(n)
±

mapping the n-tuple Z
(n)
1 , . . . ,Z

(n)
n to a “regular” grid Gn

of the unit ball Sd. That regular grid Gn is obtained as fol-
lows:
(a) first factorize n into n = nRnS + n0, with 0 ≤ n0 <

min(nR, nS);4
(b) next consider a “regular array” SnS

:= {snS
1 , . . . , snS

nS
}

of nS points on the sphere Sd−1 (see the comment be-
low);

(c) construct the grid consisting in the collection Gn of the
nRnS points g of the form(
r/
(
nR + 1

))
snS
s , r = 1, . . . , nR, s = 1, . . . , nS ,

along with (n0 copies of) the origin in case n0 6= 0: in
total n − (n0 − 1) or n distinct points, thus, according
as n0 > 0 or n0 = 0.

By “regular” we mean “as regular as possible”, in the sense,
for example of the low-discrepancy sequences of the type
considered in numerical integration, Monte-Carlo methods,
and experimental design.5 The only mathematical require-
ment needed for the asymptotic results below is the weak
convergence, as nS → ∞, of the uniform discrete distribu-
tion over SnS

to the uniform distribution over Sd−1. A uni-
form i.i.d. sample of points over Sd−1 (almost surely) satis-
fies such a requirement. However, one easily can construct
arrays that are “more regular” than an i.i.d. one. For instance,
one could see that nS or nS − 1 of the points in Sn are such
that − snS

s also belongs to SnS
, so that ‖

∑nS

s=1 snS
s ‖ = 0

or 1 according as nS is even or odd. One also could consider

3Namely, P+
d ( P±d ( Pd

4Note that this implies that n0/n = o(1) as n→∞. See Mor-
dant (2021, Chapter 7.4) for a suggestion of selecting nR and nS .

5See also Hallin and Mordant (2021) for a spherical version of
the so-called Halton sequences.



factorizations of the form n = nRnS + n0 with nS even,
then require SnS

to be symmetric with respect to the origin,
yielding

∑nS

s=1 snS
s = 0.

The empirical counterpart F
(n)
± of F± is defined as the

(bijective, once the origin is given multiplicity n0) map-
ping from Z

(n)
1 , . . . ,Z

(n)
n to the grid Gn that minimizes∑n

i=1

∥∥F(n)
± (Z

(n)
i ) − Z

(n)
i

∥∥2. That mapping is unique with
probability one; in practice, it is obtained via a simple op-
timal assignment (pairing) algorithm (a linear program; see
Hallin et al. (2021) for details). Call center-outward rank
of Z

(n)
i the integer (in {1, . . . , nR} or {0, . . . , nR} accord-

ing as n0 = 0 or not)

R
(n)
i;± := (nR + 1)

∥∥F(n)
± (Z

(n)
i )
∥∥ i = 1, . . . , n

and center-outward sign of Z
(n)
i the unit vector

S
(n)
i;± := F

(n)
± (Z

(n)
i )/

∥∥F(n)
± (Z

(n)
i )
∥∥ for F

(n)
± (Z

(n)
i ) 6= 0;

put S
(n)
i;± = 0 for F

(n)
± (Z

(n)
i ) = 0.

Some desirable finite-sample properties, such as strict
independence between the ranks and the signs, only hold
for n0 = 0 or 1, due to the fact that the mapping from the
sample to the grid is no longer injective for n0 ≥ 2. This,
which has no asymptotic consequences (since the number n0
of tied values involved is o(n) as n → ∞), is easily taken
care of by the following tie-breaking device:
(i) randomly select n0 directions s01, . . . , s

0
n0

in SnS
, then

(ii) replace the n0 copies of the origin with the new grid-
points

[1/2(nR + 1)]s01, . . . , [1/2(nR + 1)]s0n0
. (2.2)

The resulting grid (for simplicity, the same notation Gn is
used) no longer has multiple points, and the optimal pairing
between the sample and this grid is bijective; the n0 smallest
ranks, however, take the non-integer value 1/2.

2.2 Main properties
This section summarizes some of the main properties of the
concepts defined in Sections 2.1; further properties and the
proofs can be found in Hallin et al. (2021), Hallin, Hlubinka,
and Hudecová (2022+) and Hallin (2022).
Proposition 2.1. Let F± denote the center-outward distri-
bution function of P ∈ Pd. Then,
(i) F± is a probability integral transformation of Rd:

namely, Z ∼ P iff F±(Z) ∼ Ud; by construction,
‖F±(Z)‖ is uniform over [0, 1), F±(Z)/‖F±(Z)‖ is uni-
form over the sphere Sd−1, and they are mutually inde-
pendent.

Let Z
(n)
1 , . . . ,Z

(n)
n be i.i.d. with distribution P ∈ Pd and

center-outward distribution function F±. Then,
(ii)

(
F

(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n )
)

is uniformly distributed
over the n!/n0! permutations with repetitions of the grid-
points in Gn with the origin counted as n0 indistinguish-
able points (resp. the n! permutations of Gn if either
n0 ≤ 1 or the tie-breaking device described in Sec-
tion 2.1 is adopted);

(iii) if either n0 = 0 or the tie-breaking device described
in Section 2.1 is adopted, the n-tuple of center-outward
ranks

(
R

(n)
1;±, . . . , R

(n)
n;±

)
and the n-tuple of center-out-

ward signs
(
S
(n)
1;±, . . . ,S

(n)
n;±

)
are mutually independent;

(iv) if either n0 ≤ 1 or the tie-breaking device described in
Section 2.1 is adopted,

(
F

(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n )
)

is
strongly essentially maximal ancillary.6

Assuming, moreover, that P ∈ P+
d ,

(v) (Glivenko–Cantelli)

max
1≤i≤n

∥∥∥F(n)
± (Z

(n)
i )− F±(Z

(n)
i )
∥∥∥→ 0 a.s. as n→∞.

Center-outward distribution functions, ranks, and signs
also inherit, from the invariance of squared Euclidean dis-
tances, elementary but quite remarkable invariance and
equivariance properties under orthogonal transformations
and global rescaling. Denote by FZ

± the center-outward dis-
tribution function of Z and by F

Z;(n)
± the empirical distribu-

tion function of an i.i.d. sample Z1, . . . ,Zn associated with
a grid Gn.

Proposition 2.2. Let µ ∈ Rd, k ∈ R+, and denote by O
a d× d orthogonal matrix. Then,
(i) Fµ+kOZ

± (µ+ Oz) = OFZ
±(z), z ∈ Rd;

(ii) denoting by F
µ+kOZ;(n)
± the empirical distribution

function of the sample µ + kOZ1, . . . ,µ + kOZn as-
sociated with the grid OGn (hence by F

Z;(n)
± the empir-

ical distribution function of the sample Z1, . . . ,Zn asso-
ciated with the grid Gn),

F
µ+kOZ;(n)
± (µ+kOZi) = OF

Z;(n)
± (Zi), i = 1, . . . , n.

(2.3)

Note that the orthogonal transformations in Proposi-
tion 2.2 include the permutations of Z’s components. In-
variance with respect to such permutations is an essential
requirement for hypothesis testing in multivariate analysis.

3 Rank-based tests for multivariate
independence

3.1 Center-outward test statistics for multivariate
independence

In this section, we describe the test statistics we are propos-
ing for testing independence between two random vectors.
Consider a sample

(X′11,X
′
21)′, (X′12,X

′
22)′, . . . , (X′1n,X

′
2n)′

of n i.i.d. copies of some (d1 + d2) = d-dimensional ran-
dom vector (X′1,X

′
2)′ with Lebesgue-absolutely continuous

distribution P ∈ Pd and density f . We are interested in
the null hypothesis under which X1 and X2, with unspec-
ified marginal distributions P1 (density f1) and P2 (den-
sity f2), respectively, are mutually independent: f then fac-
torizes into f = f1f2.

6See Section 2.4 and Appendices D.1 and D.2 of Hallin et al.
(2021) for a precise definition and a proof of this essential property.



Denote by R
(n)
ki;± and S

(n)
ki;±, i = 1, 2, . . . , n the

center-outward rank and the sign of Xki computed
from Xk1,Xk2, . . . ,Xkn, k = 1, 2, respectively. For the
simplicity of notation, assume, without loss of generality
as n → ∞, that the grid used for computing those ranks
and signs is such that

∑nS

s=1 snS
s = 0, for d = d1, d2. Also

assume that n0 = 0 or 1 (if necessary, after implementing
the tie-breaking device described in Section 2.1). This im-
plies that

∑n
i=1 S

(n)
ki;± = 0 for k = 1, 2, and moreover, that

n∑
i=1

Jk
(
R

(n)
ki;±/

(
nR + 1

))
S
(n)
ki;± = 0

for any score functions Jk : [0, 1)→ R, k = 1, 2.
Consider the d1 × d2 matrices

W∼
(n)
sign :=

1

n

n∑
i=1

S
(n)
1i;±S

(n)′
2i;±, (3.1)

W∼
(n)
S :=

1

n(nR + 1)2

n∑
i=1

R
(n)
1i;±R

(n)
2i;±S

(n)
1i;±S

(n)′
2i;±, (3.2)

W∼
(n)
K :=

(
n

2

)−1∑
i<i′

sign
[(
R

(n)
1i;±S

(n)
1i;± −R

(n)
1i′;±S

(n)
1i′;±

)
×
(
R

(n)
2i;±S

(n)
2i;± −R

(n)
2i′;±S

(n)
2i′;±

)′]
, (3.3)

where sign
[
M
]

stands for the matrix collecting the signs of
the entries of a real matrix M, and

W∼
(n)
J :=

1

n

n∑
i=1

J1

( R
(n)
1i;±

nR + 1

)
J2

( R
(n)
2i;±

nR + 1

)
S
(n)
1i;±S

(n)′
2i;±,

(3.4)
where the score functions Jk : [0, 1) → R, k = 1, 2 are
the square-integrable differences of two monotone increas-
ing functions, with

0 < σ2
Jk

:=

∫ 1

0

J2
k (u)du <∞. (3.5)

Those matrices defined in (3.1)–(3.4) clearly consti-
tute matrices of cross-covariance measurements based on
center-outward ranks and signs (for W∼

(n)
sign , signs only).

For d1 = 1 = d2, it is easily seen that W∼
(n)
sign , W∼

(n)
S ,

and W∼
(n)
K , up to scaling constants, reduce to the quadrant,

Spearman, and Kendall test statistics, while W∼
(n)
J yields a

score-based extension of Spearman’s correlation coefficient.

3.2 Asymptotic representation and asymptotic
normality

Each of the rank-based matrices defined in (3.1)–(3.4) has
an asymptotic representation in terms if i.i.d. variables.
More precisely, defining Ski;± as Fk;±(Xki)/

∥∥Fk;±(Xki)
∥∥

if Fk;±(Xki) 6= 0 and 0 otherwise for k = 1, 2, let

W
(n)
sign :=

1

n

n∑
i=1

S1i;±S′2i;±, (3.6)

W
(n)
S :=

1

n

n∑
i=1

F1;±(X1i)F
′
2;±(X2i), (3.7)

W
(n)
K :=

(
n

2

)−1∑
i<i′

sign
[(

F1;±(X1i)− F1;±(X1i′)
)

×
(
F2;±(X2i)− F2;±(X2i′)

)′ ]
, (3.8)

and

W
(n)
J :=

1

n

n∑
i=1

J1

(∥∥F1;±(X1i)
∥∥)J2(∥∥F2;±(X2i)

∥∥)
S1i;±S′2i;±. (3.9)

The following asymptotic representation results then hold
under the null hypothesis of independence (hence, also un-
der contiguous alternatives).
Proposition 3.1. Under the null hypothesis of indepen-
dence, as nR and nS tend to infinity, vec

(
W∼

(n)
sign −W

(n)
sign

)
,

vec
(
W∼

(n)
S − W

(n)
S

)
, vec

(
W∼

(n)
K − W

(n)
K

)
, and, provided

that J1 and J2 are the square-integrable differences of
two monotone increasing functions, vec

(
W∼

(n)
J − W

(n)
J

)
are oq.m.(n

−1/2).

The asymptotic normality for vecW∼
(n)
sign , vecW∼

(n)
S ,

vecW∼
(n)
K , and vecW∼

(n)
J follows immediately from

the asymptotic representation results and the standard
central-limit behavior of vecW(n)

sign , vecW(n)
S , vecW(n)

K ,
and vecW(n)

J .
Proposition 3.2. Under the null (independence) hypothesis,
as nR and nS tend to infinity, n1/2vecW∼

(n)
sign , n

1/2vecW∼
(n)
S ,

n1/2vecW∼
(n)
K , and n1/2vecW∼

(n)
J are asymptotically nor-

mal with mean vectors 0d1d2 and covariance matrices

1

d1d2
Id1d2 ,

1

9d1d2
Id1d2 ,

4

9
Id1d2 , and

σ2
J1
σ2
J2

d1d2
Id1d2 ,

respectively.

3.3 Center-outward sign, Spearman, Kendall,
and score tests

Associated with W∼
(n)
sign , W∼

(n)
S , W∼

(n)
K , and W∼

(n)
J are the sign,

Spearman, Kendall, and score test statistics

T∼
(n)
sign := nd1d2

∥∥W∼ (n)
sign

∥∥2
F
, T∼

(n)
S := 9nd1d2

∥∥W∼ (n)
S

∥∥2
F
,

T∼
(n)
K :=

9n

4

∥∥W∼ (n)
K

∥∥2
F
, and T∼

(n)
J :=

nd1d2
σ2
J1
σ2
J2

∥∥W∼ (n)
J

∥∥2
F
,

respectively, where ‖M‖F stands for the Frobenius norm of
a matrix M, and σ2

Jk
, k = 1, 2 are defined as in (3.5).

In view of the asymptotic normality results in Proposi-
tion 3.2, the tests (denoted respectively by ψ(n)

sign , ψ(n)
S , ψ(n)

K ,
and ψ

(n)
J ) rejecting the null hypothesis of independence

whenever T∼
(n)
sign , T∼

(n)
S , T∼

(n)
K , or T∼

(n)
J exceed the (1 − α)-

quantile χ2
d1d2;1−α of a chi-square distribution with d1d2

degrees of freedom have asymptotic level α. These tests
are strictly distribution-free, however, and exact critical val-
ues can be computed or simulated as well. The tests based



on T∼
(n)
sign , T∼

(n)
S , and T∼

(n)
K are multivariate extensions of the

traditional quadrant, Spearman, and Kendall tests, respec-
tively, to which they reduce for d1 = 1 = d2.

4 Local asymptotic power
While there is only one way for two random vectors X1

and X2 to be independent, their mutual dependence can
take many forms. The classical benchmark, in testing for
bivariate independence, is a “local” form of an indepen-
dent component analysis model that goes back to Konijn
(1956). A multivariate extension of such alternatives has
been considered also by Gieser and Randles (1997), Taski-
nen, Kankainen, and Oja (2003) and Hallin and Paindaveine
(2008) in the elliptical context. We extend it further here to
more general, non-elliptical situations.

4.1 Generalized Konijn alternatives
Let X∗ = (X∗′1 ,X

∗′
2 )′, where X∗1 and X∗2 be mutually in-

dependent random vectors, with absolutely continuous dis-
tributions P1 over Rd1 and P2 over Rd2 and densities f1
and f2, respectively; then X∗ has density f = f1f2 overRd.
Consider

X =

(
X1

X2

)
:= Mδ

(
X∗1
X∗2

)
:=

(
(1− δ)Id1 δM1

δM2 (1− δ)Id2

)(
X∗1
X∗2

)
(4.1)

where δ∈R and M1∈Rd1×d2 , M2∈Rd2×d1 are nonzero.
For given P1, P2, M1, and M2, the distribution PX of X
belongs to a one-parameter family PX := {PX

δ | δ ∈ R}.
On f1 and f2, we make the following assumption.

Assumption 4.1.
(K1) The densities f1 and f2 are such that∫

R
dk

xfk(x)dx = 0 and

0 <

∫
R

dk

xx′fk(x)dx =: Σk <∞, k = 1, 2.

(K2) The functions xk 7→ (fk(xk))1/2, k = 1, 2 admit
quadratic mean partial derivatives7

D`[(fk)1/2], ` = 1, . . . , dk, k = 1, 2.

(K3) Letting

ϕ := (ϕ′1,ϕ
′
2)
′

:= (ϕ1;1, . . . , ϕ1;d1 , ϕ2;1, . . . , ϕ2;d1)
′

with

ϕk;` := −2D`[(fk)1/2]/(fk)1/2
a.e.
= −∂`fk/fk,

` = 1, . . . , dk, k = 1, 2,

7Existence of quadratic mean partial derivatives is equivalent to
quadratic mean differentiability; this was shown in Lind and Rous-
sas (1972) and independently rediscovered by Garel and Hallin
(1995, Lemma 2.1).

it holds that, for k = 1, 2 and ` = 1, . . . , dk, we have
0 <

∫
R

dk

(
ϕk;`(x)

)2
<∞, and8

Jk := Var (X∗′k ϕk(X∗k))

=

∫
R

dk

(x′ϕk(x)− dk)
2
fk(x)dx <∞.

It should be stressed, however, that these assumptions are
not to be imposed on the observations in order for our tests to
be valid but only intend to provide an analytically convenient
benchmark for the comparison of local power. Let

Ik :=

∫
R

dk

ϕ(x)ϕ′(x)fk(x)dx <∞.

Under PX
0 , X1 = X∗1 and X2 = X∗2 are mutually inde-

pendent; for δ 6= 0, call PX
δ a (generalized) Konijn alterna-

tive to PX
0 . Sequences of the form PX

n−1/2τ
with τ 6= 0, as

we shall see, constitute local alternatives to the null hypoth-
esis of independence in a sample of size n. More precisely,
the following LAN property holds in the vicinity of δ = 0.
Proposition 4.1. Let P1 and P2 satisfy Assumption 4.1.
Then, denoting by X(n) := (X1, . . . ,Xn), n ∈ N a trian-
gular array of n independent copies of X ∼ PX

0 , for given
nonzero M1 and M2, the familyPX of Konijn alternatives is
LAN at δ = 0 with root-n contiguity rate, central sequence

∆(n)(X(n)) :=
1√
n

n∑
i=1

[
X′1iM

′
2ϕ2(X2i)+X′2iM

′
1ϕ1(X1i)

−
(
X′1iϕ1(X1i)− d1

)
−
(
X′2iϕ2(X2i)− d2

)]
(4.2)

and Fisher information

γ2 := J1 + J2 + vec′(Σ1) vec(M′
2I2M2) (4.3)

+ vec′(Σ2) vec(M′
1I1M1) + tr(M1M2) + tr(M2M1).

Namely, under PX
0 ,

Λ(n)(X(n)) := log
dPX

n−1/2τ

dPX
0

(X(n))

= τ∆(n)(X(n))− 1

2
τ2γ2 + oP(1) (4.4)

and ∆(n)(X(n)) is asymptotically normal, with mean zero
and variance γ2 as n→∞.

4.2 Limiting distributions and Pitman efficiencies
In this section, we aim at establishing elliptical Chernoff–
Savage and Hodges–Lehmann results for our center-outward
tests based on van der Waerden and Wilcoxon scores
compared to Wilks’ test, respectively; compare Chernoff
and Savage (1958) and Hodges and Lehmann (1956). To
this end, we first derive the limiting distributions of T∼

(n)
J

and T∼
(n)
K under the sequence of alternatives PX

n−1/2τ
.

8Integration by parts yields
∫
R

dk
ϕk(x)fk(x)dx = 0,∫

R
dk

x′ϕk(x)fk(x)dx = dk, and
∫
R

dk
xϕk(x)

′fk(x)dx = Idk ,
for k = 1, 2; see also Garel and Hallin (1995, page 555).



Proposition 4.2. Let P1 and P2 satisfy Assumption 4.1.
Then, if observations are n independent copies with distri-
bution PX

n−1/2τ
, for given nonzero M1 and M2,

(i) the limiting distribution of the test statistic T∼
(n)
J is non-

central chi-square with d1d2 degrees of freedom and non-
centrality parameter

τ2d1d2
σ2
J1
σ2
J2

∥∥∥EH0

[
J1(F1;±(X1))RJ2(F2;±(X2))′

]∥∥∥2
F
,

where R := X′1M
′
2ϕ2(X2) + X′2M

′
1ϕ1(X1) and

Jk(u) := Jk(‖u‖) u

‖u‖
1[‖u‖6=0], u ∈ Sd;

(ii) the limiting distribution of the Kendall test statistic T∼
(n)
K

is noncentral chi-square with d1d2 degrees of freedom
and noncentrality parameter

9τ2
∥∥∥EH0

[
F�

1;±(X1)RF�
2;±(X2)′

]∥∥∥2
F
,

where (
F�
k;±(Xk)

)
j

:= 2Fkj

((
Fk;±(Xk)

)
j

)
− 1

(recall Fkj denotes the cumulative distribution function
of
(
Fk;±(Xk)

)
j
).

Suppose that all the conditions in Proposition 4.2 hold.
Then the limiting alternative distribution of Wilks’ (log)
likelihood ratio test statistic is also noncentral chi-square,
with d1d2 degrees of freedom and noncentrality parameter

τ2
∥∥∥Σ1/2

1 M′
2Σ
−1/2
2 + Σ

−1/2
1 M1Σ

1/2
2

∥∥∥2
F

;

see, e.g., page 919 of Taskinen, Oja, and Randles (2005).
Now we are ready to compute the asymptotic relative ef-

ficiencies of our center-outward rank tests with respect to
Wilks’ likelihood ratio test.
Proposition 4.3. Let P1 and P2 be elliptically symmetric
distributions, namely, admit densities of the form

fk(xk) ∝ (det(Σk))−1/2φk

(√
x′kΣ

−1
k xk

)
, k = 1, 2,

satisfying Assumption 4.1. Then, the Pitman asymptotic rel-
ative efficiency (ARE) of the center-outward test based on
score functions Jk, k = 1, 2 with respect to Wilks’ test (de-
noted by ψ(n)

N ) is

ARE(ψ
(n)
J , ψ

(n)
N )

=

∥∥∥D1C2Σ
1/2
1 M′

2Σ
−1/2
2 +D2C1Σ

−1/2
1 M1Σ

1/2
2

∥∥∥2
F

d1d2σ2
J1
σ2
J2

∥∥∥Σ1/2
1 M′

2Σ
−1/2
2 + Σ

−1/2
1 M1Σ

1/2
2

∥∥∥2
F

,

where
Ck ≡ Ck(Jk, φk) := E[J−1k (U)ρk(F̃−1k (U))],

Dk ≡ Dk(Jk, φk) := E[J−1k (U)F̃−1k (U))],

ρk := −φ′k/φk, F̃k denotes the cumulative distribution
function of ‖Yk‖ with Yk := Σ

−1/2
k Xk, and U stands for

a random variable uniformly distributed over (0, 1). In par-
ticular, if Σ1M

′
2 = M1Σ2, we have

(i) ARE(ψ
(n)

JvdW , ψ
(n)
N ) ≥ 1, where J vdW

k , k = 1, 2 are the

van der Waerden score functions J vdW
k (u) :=

(
F−1
χ2
dk

(u)
)1/2

with Fχ2
d

the χ2
d cumulative distribution function;

(ii) ARE(ψ
(n)

JW , ψ
(n)
N ) ≥ Ω(d1, d2) ≥ 9/16, where the

Wilcoxon score functions are defined as JW
k (u) := u

for k = 1, 2, and

Ω(d1, d2) :=
9(2c2d1 + d1 − 1)2(2c2d2 + d2 − 1)2

1024d1d2c2d1c
2
d2

,

cd := inf
{
x > 0

∣∣∣ (√xB√2d−1/2(x)
)′

= 0
}
,

Ba(x) :=

∞∑
m=0

(−1)m

m!Γ(m+ a+ 1)

(x
2

)2m+a

.

Gieser (1993) notices that the Pitman ARE depends on
the underlying covariance structure (Σ1 and Σ2) for X1

and X2 with elliptically symmetric distributions, while most
the existing literature (e.g. Gieser (1993), Gieser and Ran-
dles (1997), Taskinen, Kankainen, and Oja (2003, 2004),
Taskinen, Oja, and Randles (2005), Hallin and Paindaveine
(2008) and Deb, Bhattacharya, and Sen (2021)) focuses on
the spherically symmetric case. The proposition above fills
this gap by providing the explicit formula of ARE with
general Σk’s. Claim (i) shows Pitman non-admissibility
under ellipticity of Wilks’ test, which is uniformly dom-
inated by our center-outward test with van der Waerden
scores, for elliptically symmetric distributions. This is com-
parable with Theorem 4.1 in Deb, Bhattacharya, and Sen
(2021). Claim (ii) is a multivariate extension of Hodges and
Lehmann (1956)’s result; the infimum of Ω(d1, d2), 9/16, is
achieved when d1, d2 → ∞. One can find more numerical
values of Ω(d1, d2) for fixed d1, d2 in Hallin and Paindav-
eine (2008, Table 3).

5 Conclusion
Optimal transport provides an entirely new approach to
rank-based statistical inference in dimension d ≥ 2. The
new multivariate ranks retain many of the favorable proper-
ties one is used to with the classical univariate ranks. Here,
we demonstrate how the new multivariate ranks can be used
for a definition of multivariate versions of popular rank
correlations such as Kendall’s tau or Spearman’s rho. We
show how the new multivariate rank correlations yield fully
distribution-free, yet powerful and computationally efficient
tests of independence. A highlight of our results is the fact
that the use of van der Waerden scores allows one to design
a nonparametric test whose asymptotic efficiency under ar-
bitrary elliptical densities never drops below that of Wilks’
test—not even under a Gaussian model.
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